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Abstract

The study of collective motions of molecules provides useful insights into the large
amplitude conformational changes the molecules experiment during chemical reactions. In
particular, theoretical normal modes analyses of proteins taking into account the lowest-
frequency modes may help to predict the nature of such conformational changes. This
work lists a set of proteins for which the theoretical motion history has been examined.
Focus is given on the computation of low-frequency modes (eigenvalues and eigenvectors)
using a code based on the Lanczos algorithm. The normal modes approach and the main
ideas governing the technique employed to compute the required modes are first outlined.
Then, five distinct cases ranging from 396 to 8528 atoms are discussed. Finally, guidelines
for the eigenanalyses of similar problems are proposed.
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1 Introduction

The solutions of

Az = ABz (1)

where A and B are n X n matrices, z is a non null vector and A is a scalar, are of great
importance in a variety of disciplines. The above relation defines a generalized eigenproblem,
a standard eigenproblem is obtained when B is equal to the identity matrix. In many cases,
eigenproblems are associated with fundamental characteristics of differential and integral
operators describing a physical phenomenon. The dimensions of A and B can thus reach
dimensions of tens of thousands due to the complexity, the level of the discretization of a
continuous problem or the precision required for the results. Real applications commonly
require the computation of only a small subset of the n eigenpairs (A, z): the eigenvalues A of
interest are those lying either in one of the extremities of the spectrum or in an interval [£, &),
together with the corresponding eigenvectors x. However, even the determination of a few
solutions of (1) uses to be a time consuming task, justifying a search for efficient algorithms.

Lanczos’ [18] and Arnoldi’s [2] methods are widely used nowadays for treating eigenproblems
associated with large sparse matrices. These techniques generate an appropriate basis of
vectors aiming at the projection of the original problem into a smaller problem, involving
a tridiagonal matrix (Lanczos) or a Hessenberg matrix (Arnoldi). Eigensolutions are then
computed for these reduced problems. Approximate pairs (;\, &) for the original problem are
obtained by means of a Rayleigh-Ritz or a Galerkin approach. At each step, one vector, or
more if a variant by blocks is employed, is added to the basis. Convergence is then achieved
as the basis size, m, increases and it usually happens with m < n. The algorithms of Lanczos
and Arnoldi are also attractive because they do not perform modifications on the matrices
of the problem. See [6, 14, 24, 25, 26] for a detailed presentation of these methods.

The study of collective motions of molecules provides useful insights into the large amplitude
conformational changes the molecules experiment during chemical reactions. Such motions
are likely to play an important role in enzymatic activities [4, 10, 23]. In particular, theoretical
normal modes analyses of proteins® taking into account the low-frequency modes help to
predict the nature of their conformational changes. As shown in [21] for citrate synthase,
for example, where conformational transitions involve the relative movement of almost rigid
structural elements, theoretical results match those obtained with X-Ray crystallography.
The normal modes method consists in obtaining an approximation for the history of motion
of the protein through the superposition of collective variables, namely the normal modes
coordinates. These coordinates are obtained as solutions of a real symmetric eigenproblem
whose dimension is equal to three times the number of atoms.

This work lists a set of proteins for which the theoretical study of collective motions has
been performed. We focus on the computation of low-frequency modes using a code based on
the Lanczos algorithm. The normal modes approach is outlined in the next section. A brief
description of the eigenextraction technique is also given. Then, five proteins whose number
of atoms vary from 396 to 8528 are examined. We conclude with a discussion on the main
issues the practitioner should be aware of when dealing with similar problems.

$Using the simplified definition given by Nielsen [23], “proteins are formed by amino acids strung together,
like pearls in a bracelet”. The amino acids are usually referred to as residues.



2 Normal modes approach

In the neibourghood of a stationary point, the potential energy, V., of a system can be

approximated by
3n 3n

V=5 X hulr = ri) - 1), 2
i=1 j=1
where the k;;’s are the second derivatives of the potential energy with respect to coordinates
r; and r;, and r} and r7 are the ¢ and j coordinates of the stationary structure. With
approximation (2), the equations of motion of the n atoms of the system can be solved
analytically by means of

ri(t) =i +

1 3n
i), i=1,2,..3 3
/_mi;a]%() ? n (3)

with
qj(t) = Cjcos(w;t + ¢;), (4)

which means that each atomic motion, r;(t), results from the superposition of 3n independent
sinusoidal contributions, or normal modes. In the above equations, m; is the atomic mass, C
and ¢; are the amplitude and phases, respectively, of normal mode j (dependent upon initial
conditions), w; is the frequency of normal mode j, obtained as the square root of the j-th
eigenvalue of the mass-weighted second derivatives of the potential energy matrix (w = \/X),
and the vector a; = {ay;,ay;, .. .agnj}T is the j-th eigenvector of the aforementioned matrix.
At a given temperature, the lower the frequency of a normal mode, the larger its amplitude.

3 Computing the normal modes

The normal modes and related frequencies are obtained from the solutions of a real symmetric
eigenproblem Az = Az, with

A= MY VIE)M?, (5)

being E the potential energy matrix, and M the atomic masses matrix (diagonal). The
dimension of £ and M is three times (the spatial coordinates) the number of atoms. Usually,
the normal modes whose frequencies lie under 30-100 cm™! (the smallest eigenvalues) are
responsible for most of the amplitude of the atomic displacements of proteins [19, 27]. Since
the protein is free in the space, the 6 smallest eigenvalues (and eigenvectors) have no practical
interest because they are associated with free (zero energy) molecular motions. Therefore,
A is singular and the rigid body motions are not taken into account in the normal modes
analysis. The definition of A allows us to devise also the generalized eigenproblem

(V2E)y = AMy,

with y = M~/2z. However, in the CHARMM 21.3 package [5], which has been employed to
model the proteins and to compute and minimize the potential energy, data is retrieved as
indicated in (5). Moreover, the coordinate system chosen plays a role in the structure of the
problem. Cartesian coordinates have been used in our experiments.



In this work, eigenvalues and eigenvectors were computed with the public domain package
BLZPACK described in [21]. BLZPACK is a Fortran 77 implementation of the block Lanczos
method (in combination with a modified partial reorthogonalization and a selective orthogo-
nalization strategies) for the computation of eigenvalues A and eigenvectors z of the standard
problem Az = Az or the generalized problem Az = ABz, where A and B are real symmetric
matrices (in this case, a positive definite linear combination of A and B must exist).

The governing idea of the Lanczos algorithm is the generation of an appropriate basis for a
Krylov subspace. The Krylov subspace associated with a symmetric matrix A of order n and
a starting vector ¢; of unitary length is defined as

IC(A7q17j) = Span(QMAQh---Aj_l%)- (6)

The projection of the original problem into the basis leads to a smaller problem, involving a
symmetric tridiagonal matrix. Approximate eigenpairs (/A\7 &) for the original problem are then
recovered through a Rayleigh-Ritz procedure [25]. Convergence for the dominant eigenvalues
of A is usually achieved with 7 < n. Associated with the block strategy there is a Krylov
subspace built from a full rank n x p matrix @1 = [ q%l) qgl) qz(jl) L, QTQ, =1,1<p<n,
where p is the block size [14, 25]:

K(A,Qn,7) = span(Q1, AQq,...A71Qy). (7)

An approach by blocks allows for better convergence properties when there are many multiple
eigenvalues and also a better data management on some computer architectures.

In the general case, the Lanczos algorithm requires calculations involving the matrices A, B
and sets of vectors until convergence for the required solutions is reached. However, in the
BLZPACK implementation, each time such calculations have to be performed the control is
returned to the user, which means that A and B do not have to be passed as arguments for
the interface module. Actually, BLZPACK is tailored to a class of applications for which at
least one “inversion” of the operator A, = A — o B is feasible, where ¢ is a real scalar. With
such an inverted operator the eigenvectors are preserved while the eigenvalues are remapped
(the Krylov subspaces are then associated with A;! instead of A). Eigenvalues lying in a
range of interest can be therefore set apart from the remaining eigenvalues, leading to better
converge rates for the wanted solutions. In practical cases, the inversion is replaced by a
factorization A, = LDL™T, where I is a lower unit triangular matrix and D is a direct sum
of 1 x 1 and 2 x 2 pivot blocks, allowing for solutions of systems of linear equations for the
basis generation. Since the matrices A and B are kept outside the code, the user is free to
employ specific storage strategies or experiment with distinct factorization routines.

As previously discussed, the normal modes coordinates are obtained as solutions of an eigen-
problem Az = Az. We recall that the solutions of interest are those in the lower end of the
eigenvalue spectrum, thus justifying the use of A-!. For convenience, the user can run the
problem as generalized, using B = I. In this case, the eigenvalues of A are automatically
retrieved by BLZPACK from those of A;!. Alternatively, the problem can be rewritten and
solved as Az = Oz, where 6 = /\ITU With this approach, BLZPACK skips over steps that
are normally required for generalized problems and returns the largest . The wanted values
are therefore simply given by o+ % while the eigenvectors do not need any modification. This
was the strategy applied to the experiments described in the next section.



4 Study Cases

In this section, we discuss on the computation of subsets of normal modes of five proteins.
Table 1 gives the name of each protein, the dimension, n, of the associated matrix A, and
the number of non zero coefficients, nz, in the upper triangle of A. All cases examined here
were obtained from the Brookhaven Data Bank [3]. Their representations were drawn with
Molscript [17]. In general, we measured the CPU time required (in seconds) and the number
of steps performed for the convergence of a given number of eigenpairs, NREIG, varying p
and o (block size for the Lanczos algorithm and translation of origin). However, several
eigenvalues can converge simultaneously resulting in more than NREIG solutions available
at the end. The first four cases in Table 1 were examined on an IBM Risc 6000/950, using
double precision. The largest case was examined on a CRAY (€90, using single precision.

The eigenvalues are listed with the associated residual errors mp = ||Adj — 6ziy||, where
A:A;l, 6, = 3 1_0, and (ék, &) is the approximate eigenpair computed by BLZPACK. One
should note tha‘g 1, depends, among others, on the starting vectors, the block size and the
number of steps performed. Nevertheless, it can be estimated at a very low cost (see [21] for
details). Distinct strategies were used for the factorization A, = LDLT and later solutions

of systems of equations, thus replacing operations involving A;!.

A collection of subprograms labelled skypack, intended for linear algebra operations with real
symmetric matrices stored in a skyline (or profile) arrangement has been coded by one of
us. For each column of the matrix, the skyline arrangement stores from the first non-zero
element to the diagonal element (profile in) or from the diagonal element to the last non-zero
(diagonal out) [9]. Good computational performances can be then achieved providing the
semibandwidth, sbw¥, of the matrix is reduced by a Reverse Cuthill-McKee (RCM) ordering,
for example. Two factorization modules are available in skypack: a standard approach using
BLAS 1 kernels!l (skypack® thereafter) [16], and a partitioned approach using BLAS 2 and 3
kernels (skypack? thereafter) [20]. The partitioned scheme requires two auxiliary arrays, one
square and other rectangular, to keep data in fast memory as much as possible. For the
IBM Risc 6000/950 their dimensions were set to 64 and 64 x 128, respectively. For the
CRAY C90 they were set to 128 and 128 x 256, respectively. After the factorization has
been performed by either module, the solution phase uses BLAS 1 kernels. The subroutines
MA27 and MAA47, available in the Harwell Subroutine Library [1], were also employed for
the factorization of A, and solution of systems of equations. The former subroutine uses a
sparse variant of Gaussian elimination and a symmetric minimum degree (MMD) ordering,
while the latter uses a multifrontal Gauss elimination and a combination of MMD and the
Markowitz ordering strategy. Ordering schemes aim at reducing the fill-in and the number
of operations to be performed during the factorization process, see [8, 9, 13] for details. By
choosing appropriate values for o, A, becomes positive definite. Therefore, pivoting to assure
numerical stability is not needed and the factorization can be performed more efficiently.
Pivoting in MA27 can be suppressed by setting the variable U in common block MA27D to
zero after the symbolic manipulations phase (subroutine MA27A). For MA47, the first entry
in the control array CNTL have to be set to zero after default values are specified (subroutine
MAA471). Conversely, the factorization modules in skypack do not support pivoting.

TFor a symmetric matrix, sbw is the smallest integer such that a;; = 0 whenever |i — j| > sbw.
IBLAS 1: vector-vector products, BLAS 2: matrix-vector products, BLAS 3: matrix-matrix products.



Table 1: Characteristics of the study cases

‘ protein ‘ n ‘ nz ‘
crambine 1188 | 134217
lysozyme 3795 | 490602
ras 4986 | 669060
arabinose 8592 | 1161360
citrate synthase | 25584 | 3691020

4.1 Crambine

Crambine is a protein found in some seeds. IFigure 1 shows its ball-and-stick representation.
The first 16 eigenvalues of the corresponding matrix A are listed in Table 2. The residuals
and pyg :i‘;{Aa%k, obtained for the case ¢ = —0.100 and p = 3, are also listed. The products
Pk, considering five digits in each component of Zj, were computed only to verify the accuracy
of the approximate solutions for this kind of application.*™ One can see that the eigenvectors
associated with the relevant eigenvalues are very well approximated, the others are more
sensitive to the (quasi) singularity of the matrix.

Table 3 shows the computational effort, in terms of CPU time, dedicated to skypack, MA27
and MAA47, for the factorization of A,. The strategy implemented in skypack? was at
least 14% faster than the other techniques. Table 3 gives also the number of double pre-
cision words required during the factorization and used to store the factors D and L:1T the
skyline arrangement uses a static data structure while MA27 and MA47 use dynamic data
structures. The numbers in parentheses are the ratios between the work space needed and nz,
which gives an indication of the fill-in. MA27 and MAA47 required larger arrays for handling
data than the skyline arrangement. At the end, the factors computed by MA27 resulted
slightly better compressed. Figure 2 shows the distribution of the non zero entries in the
upper triangle of A as output by CHARMM and after RCM and MMD orderings.

Table 4 lists the CPU time required using skypack, MA27 and MA47, not including the
factorization phase, and j, the number of steps performed by BLZPACK, for NREIG=16.
In general, the version using MA27 was the most time consuming. Between parentheses
are the percentages of the CPU time spent with solutions of systems of equations. Since j
may vary slightly for different orderings of A, and therefore m = p x j, the size of the basis
computed, the maximum value detected is given. One can see that the convergence improves
as o approaches the first eigenvalue (in other words, 1, becomes smaller with fewer steps),
more significantly from ¢ =—0.100 to 6 =—0.010. None of the first 6 eigenvalues satisfied the
convergence criterion for 0 = —0.100 and p = 1, for example. However, by setting the output
level of BLZPACK accordingly, eigenvalue approximations that did not satisfy the convergence
criterion are also listed. Then, the user may adopt different stratagems to obtain the missing
solutions. Guidelines for dealing with such cases are given in [22].

**Since the eigenvectors computed by BLZPACK satisfy ||Z|| = 1, px is the Rayleigh quotient for .
" The variables NRLTOT and NRLADU in common block MA27E for MA27, the 6th and 10th entries of
array parameter INFO for MA47.



Figure 1: Ball-and-stick representation of crambine.

Table 2: Figenvalues of crambine

Ak

k Mk Pk
1 | -7.8839E-09 | 4.9194E-11 | -1.3419E-09
2 1 -9.3970E-10 | 2.6122E-09 | 6.0530E-09
3 | -7.5672E-10 | 3.0656E-09 | 4.7432F-09
4 1.7218E-10 | 7.2500E-10 | 5.1841E-09
5 | 5.2027E-10 | 2.0762E-09 | 8.8761E-09
6 1.8362E-09 | 1.9175E-09 | 7.6201E-09
71 2.3736E-03 | 2.2360E-14 | 2.3736E-03
8 | 5.2786E-03 | 2.3826E-14 | 5.2786FE-03
9 | 6.7808E-03 | 4.7708E-14 | 6.7808E-03
10 1.2590E-02 | 1.6080E-12 | 1.2590E-02
11 1.4909E-02 | 5.1281E-12 | 1.4909E-02
12 1.6047E-02 | 1.2831E-11 1.6047E-02
13 1.8084E-02 | 1.9944F-11 1.8084E-02
14 | 1.9449E-02 | 2.0988E-11 1.9449F-02
15 | 2.3622E-02 | 1.1872E-10 | 2.3622E-02
16 | 2.6567E-02 | 3.9522E-10 | 2.6567E-02

Table 3: Crambine, factorization of A,.

code CPU double precision words
required | factors
skypack! | 6.8 | 344322 (2.6) | 344322 (2.6)
skypack? | 5.5 | 344322 (2. 6) 344322 (2. 6)
MA27 7.9 | 612085 (4.6) | 342927 (2.6
MA47 6.4 | 925804 (6. 9) 352449 (2. 6)




¢) MMD ordering.

Figure 2: Crambine, upper triangle of A.
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Table 4: Crambine, number of steps and CPU time for NREIG=16.

p o =—0.100 c=-0.010 o= —0.001
j | skypack | MA27 | MA47 | j | skypack | MA27 | MA47 | j | skypack | MA27 | MA47
1{90] 83 8.5 76 |b54| 3.8 4.2 37 143 3.1 3.5 3.0
(65.9) | (70.0) | (65.8) (81.1) | (82.0) | (77.9) (82.2) | (84.0) | (80.5)
2 53] 91 11.0 9.9 |31 | 45 5.1 45 |28 | 4.0 4.6 4.0
(62.3) | (66.8) | (62.7) (74.3) | (79.3) | (76.7) (75.3) | (80.2) | (77.1)
30139 93 11.6 | 103 | 25| 5.0 6.5 57 23| 45 5.9 5.2
(63.6) | (68.5) | (64.9) (73.9) | (77.7) | (75.2) (75.4) | (79.4) | (76.2)
4132 105 127 | 11.3 |21 | 5.9 6.9 6.1 (19| 5.2 6.6 5.8
(62.2) | (68.7) | (64.7) (72.2) | (78.7) | (75.6) (73.5) | (78.8) | (75.8)
5128 11.8 144 | 129 |19 | 7.0 8.0 71117 6.1 7.6 6.8
(58.9) | (66.1) | (62.2) (67.9) | (76.1) | (73.1) (69.7) | (75.8) | (72.2)
624 12.0 147 | 13.1 | 17| 7.4 9.3 83 |16 | 7.1 8.8 7.8
(59.2) | (66.6) | (62.8) (67.3) | (73.4) | (70.1) (66.7) | (74.0) | (70.4)

4.2 Lysozyme

The ribbon representation for the protein lysozyme is shown in Figure 3. The first 16 eigen-
values of the corresponding matrix A are listed in Table 5. The residuals 73 and the products
pr, for the case ¢ = —0.0100 and p = 1, are also listed. Again, the products pj, considering
five digits in each component of #;, were computed only to estimate the accuracy of the
approximate solutions. One can see that the eigenvectors corresponding to the significant
eigenvalues are very well approximated.

Table 6 shows the computational effort, in terms of CPU time, dedicated to skypack, MA27
and MAA47, for the factorization of A,. This time, the strategy implemented in skypack?
was at least 24% faster than the other techniques. Table 6 gives also the number of double
precision words necessary for the factorization. The numbers in parentheses are the ratios
between the work space needed and nz. MA27 and MA47 required arrays 50% and 114%
larger, respectively, for handling data than the skyline strategy. However, the factors they
computed were up to 7% better compressed. Figure 4 shows the pattern of the upper triangle

of A as output by CHARMM and after RCM and MMD orderings.

Table 7 lists the CPU time required using skypack, MA27 and MA47, not including the factor-
ization phase, and the maximum number of steps performed by BLZPACK, for NREIG=16.
In general, the versions using skypack and MA47 had similar performances. The numbers in
parentheses are the percentages of the CPU time spent with solutions of systems of equations.
Convergence improves as ¢ approaches ;\1, mainly from ¢ =—0.100 to 0 = —0.010. As o is
moved closer to A the first six eigenvalues are obtained fast, since their counterparts in A;!
become fairly isolated (the é—spectrum). However, the relative separation among the interest-
ing values is not improved and therefore the global convergence remains almost unchanged.
A similar situation occurs for o close to ;\7, for instance. An equilibrated convergence rate
could be obtained by using a few distinct 0. Nevertheless, since NREIG is not big in this
case, that requirement is not mandatory; besides, it would increase the factorization costs.



Figure 3: Ribbon representation of lysozyme.

Table 5: Eigenvalues of lysozyme.

Ak

k Mk Pk

1 |-9.4463E-07 | 1.6781E-15 | -9.3047E-07
2 | -2.8891E-07 | 9.9311E-14 | -2.7744E-07
3 | -1.4751E-07 | 2.8643E-13 | -1.3227E-07
4 | -7.1575E-09 | 4.7305E-13 | 4.3217E-09
5 4.0230E-08 | 1.2038E-12 | 5.1140E-08
6 1.5103E-06 | 1.4811E-16 | 1.5228E-06
7 1.8665E-03 | 1.4221E-21 | 1.8665E-03
8 2.2531E-03 | 5.0341E-20 | 2.2531E-03
9 | 3.0841E-03 | 1.2265E-16 | 3.0841E-03
10 | 3.1389E-03 | 3.9942E-17 | 3.1389E-03
11 | 3.6738E-03 | 1.9834E-16 | 3.6738E-03
12 | 5.0895E-03 | 3.7787E-14 | 5.0896E-03
13 | 5.3663E-03 | 1.1366E-13 | 5.3663E-03
14 | 6.3739E-03 | 1.1561E-11 | 6.3739E-03
15| 6.9262E-03 | 1.0013E-10 | 6.9263E-03
16 | 7.8606E-03 | 1.0615E-08 | 7.8606E-03

Table 6: Lysozyme, factorization of A,.

code CPU double precision words
required | factors
skypack! | 79.8 | 2306568 (4.7) | 2306568 (4.7
skypack? | 54.6 | 2306568 (4.7) | 2306568 (4.7)
MA27 96.9 | 3467035 (7.1) | 2220078 (4.5)
MA47 71.9 | 4925977 (10.0) | 2156151 (4.4)
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Table 7: Lysozyme, number of steps and CPU time for NREIG=16.

P o =—0.0100 o =—0.0010 o =—0.0001
| skypack | MA27 | MA47 | ;j | skypack | MA27 | MA47 | j | skypack | MA27 | MA47
162 254 | 279 | 221 [48| 194 | 204 | 162 |46 | 188 188 | 15.9
(92.8) | (93.7) | (91.9) (93.8) | (94.4) | (92.7) (93.1) | (93.1) | (92.3)
239 296 36.9 | 289 |31] 23.1 285 | 23.0 |30 | 225 225 | 23.2
(89.1) | (90.7) | (88.5) (88.8) | (90.6) | (88.4) (87.1) | (87.1) | (86.8)
30130 33.1 426 | 336 |24| 26.6 33.0 | 265 | 23| 25.7 25.7 | 25.9
(88.2) | (90.7) | (88.3) (87.9) | (90.9) | (88.9) (87.2) | (87.2) | (87.3)
4126 379 | 483 | 386 |21 | 303 38.7 | 31.0 | 20| 29.2 29.2 | 29.8
(87.6) | (90.2) | (87.9) (88.2) | (90.7) | (88.5) (87.1) | (87.1) | (87.5)
5123 398 543 | 44.1 | 19| 325 | 442 | 356 |18 | 33.1 33.1 | 345
(86.9) | (88.6) | (85.7) (87.3) | (89.9) | (87.5) (85.3) | (85.3) | (85.4)
6|21 47.3 56.7 | 456 |17 | 379 | 478 | 386 |16 | 36.1 36.1 | 36.8
(86.1) | (88.8) | (86.3) (86.7) | (89.4) | (86.8) (85.8) | (85.8) | (85.9)
4.3 Ras

Ras is a protein related with transmission of biochemical information between the surface
of the cell and its nucleus. Mutations in human ras genes are responsible for up to one
third of all cases of cancer [7]. The ribbon representation for ras is shown in Figure 5. Four
slightly different models of the protein have been examined. The distribution of the first 50
eigenvalues corresponding to the matrix A of one of the models is given in Figure 6. The
values of interest in this case are spread from /\7_ 1.1585x 1072 to /\50—2 8650 x 1072,

Table 8 shows the computational effort, in terms of CPU time, dedicated to skypack, MA27
and MAA47, for the factorization of A,. The number of double precision words necessary
for the factorization and the corresponding ratios with respect to nz are also given. As for
the previous cases, MA27 and MA47 required larger arrays for their data structures (14%
and 64%, respectively) than the skyline arrangement. Here, however, the ordering schemes
employed in MA27 and MA47 led to much less full-in in the factor L. All the same, these
efficient compressings were not reflected in the CPU times, since MA27 was slower and MA47
was only marginally faster than skypack? . Figure 7 shows the pattern of the upper triangle

of A as output by CHARMM and after RCM and MMD orderings.

Table 9 lists the CPU time required using skypack, MA27 and MA47, not including the factor-
ization phase, and the maximum number of steps performed by BLZPACK, for NREIG=50.
The version using MA47 was the fastest and the version using skypack was certainly penalized
by the fill-in in the factor L. The numbers in parentheses are the percentages of the CPU time
spent with solutions of systems of equations. As can be verified, the convergence rate was not
modified by moving ¢ from —0.0010 to —0.0001 and the CPU time even increased in almost
all situations. As o is moved towards 0 the first six eigenvalues converge fast. In the Lanczos
algorithm, convergence is related with a loss of orthogonality among the vectors of the basis
generated. If no action is taken, redundant copies of eigenvalues tend to emerge. Thus,
additional computations are performed to maintain the orthogonality level under control.
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Figure 5: Ribbon representation of ras.
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Figure 6: Ras, the first 50 eigenvalues (A = —4.4722x1077, Ag=1.5417x1077).

Table 8: Ras, factorization of A, .

code CPU double precision words
required | factors
skypack! | 205 | 4490910 (6.7) | 4490910 (6.7)
skypack? | 138 | 4490910 (6.7) | 4490910 (6.7)
MA27 168 | 5119693 (7.7) | 3431601 (5.1)
MA47 132 | 7355731 (11.0) | 3461094 (5.2)

Table 9: Ras, number of steps and CPU time for NREIG=50.

P o = —0.0010 o = —0.0001
| skypack | MA27 | MA47 | 4 | skypack | MA27 | MA47
11116 96.9 86.1 73.2 | 114 96.2 87.2 73.1
(87.3) | (85.6) | (82.8) (86.0) | (84.1) | (81.4)
2| 67 105. 105. 89.3 | 67 109. 112. 93.5
(82.8) | (82.5) | (79.0) (79.8) | (78.8) | (76.1)
31 50 113. 111. 94.8 | 49 113. 118. 99.8
(83.8) | (84.1) | (80.9) (81.9) | (81.7) | (78.1)
41 39 115. 119. 102. 39 118. 124. 108.
(85.2) | (85.2) | (82.3) (83.5) | (82.8) | (80.1)
5| 35 134. 138. 118. 35 137. 142. 119.
(83.9) | (83.1) | (79.8) (81.9) | (81.8) | (78.2)
6| 31 150. 143. 123. 31 150. 146. 124.
(84.1) | (83.1) | (80.1) (82.8) | (82.1) | (78.6)
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Figure 8: Ribbon representation of arabinose.

4.4 Arabinose

The ribbon representation for the protein Arabinose is shown in Figure 8. The first 16
eigenvalues of the corresponding matrix A, as well as the residuals n; for the case p = 3 and
o = —0.0010, are listed in Table 10. The magnitudes of the first two negative eigenvalues
indicate that additional steps should be performed for a more accurate minimization of the
potential energy. As a result of the minimization obtained in this case, the matrix A, becomes
positive definite with ¢ < —0.0410.

Table 11 shows the computational effort, in terms of CPU time, dedicated to skypack, MA27
and MAA47, for the factorization of A,. This time, the strategy implemented in skypack?
was at least 24% faster than the other techniques. Table 11 gives also the number of double
precision words necessary for the factorization. The numbers in parentheses are the ratios
between the work space needed and nz. MA27 and MA47 required arrays 22% and 73% larger,
respectively, for handling data than the skyline strategy, but the factors they computed were

up to 8% better compressed. Figure 9 shows the pattern of the upper triangle of A as output
by CHARMM and after RCM and MMD orderings.

Table 12 lists the CPU time required using skypack, MA27 and MAA47, not including the fac-
torization phase, and the maximum number of steps performed by BLZPACK, for NREIG=16.
As can be seen, the convergence rate was not significantly modified by moving o from —0.0010
to —0.0001. The versions using skypack? and MA47 were competitive in this case, although
the L factor was larger in the former. Percentages of the CPU time spent with solutions of
systems of equations are given in parentheses. As in the previous cases, moving o towards
the origin did not change the convergence rate considerably. Note that for the values of o
indicated in Table 12 the matrix A, becomes indefinite, that is to say, negative values of 8
appear. However, if one wishes, the conditioning of the system can be estimated by the ap-
proximate eigenvalue spectrum provided by the eigensolver. In addition, errors introduced by
an ill-conditioned system would have strong eigenvector components and could be therefore
useful in the present application.
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Table 10: Eigenvalues of arabinose.

Ak

k Mk

1 | -4.0968E-02 | 3.6404E-15
2 | -3.1209E-04 | 9.2563E-15
3 | -2.4069E-06 | 4.0132E-12
4 | -1.4992FE-06 | 7.1776E-12
5 | 1.1459E-07 | 2.4193E-12
6 | 1.5875FE-06 | 6.6737E-12
7 | 2.0016E-06 | 5.5117E-12
8 | 6.6040FE-06 | 2.7533E-12
9 | 4.0125E-04 | 8.2702E-13
10 | 8.1116E-04 | 2.7108E-12
11 | 1.1388E-03 | 8.8392E-12
12 | 1.4323E-03 | 6.7416E-12
13 | 1.5169E-03 | 1.4736E-11
14 | 2.2458E-03 | 1.0804E-10
15| 2.9136E-03 | 1.9197E-09
16 | 3.2549E-03 | 3.8544E-09

Table 11: Arabinose, factorization of A,.

code CPU double precision words
required | factors
skypack! | 365 | 8089938  (7.0) | 8089938 (7.0)
skypack? | 239 | 8089938  (7.0) | 8089938 (7.0)
MA27 461 | 9847525  (8.5) | 7H01134 (6.5)
MA47 337 | 13992907 (12.0) | 7499190 (6.5)

Table 12: Arabinose, number of steps and CPU time for NREIG=16.

p o= —0.0010 o = —0.0001
j | skypack | MA27 | MA47 | 4 | skypack | MA27 | MA47
1|47 64.3 65.2 57.9 | 45 61.9 61.2 53.8
(96.0) | (96.2) | (95.7) (95.6) | (96.0) | (95.6)
2130 75.1 86.7 77.3 |29 74.0 86.0 75.5
(93.0) | (93.9) | (93.2) (91.9) | (92.7) | (92.0)
3125 92.4 104. 92.9 | 23 85.5 95.9 85.8
(92.6) | (93.9) | (93.2) (91.9) | (93.0) | (92.2)
4| 22 107. 122. 109. | 21 103. 117. 104.
(92.2) | (93.5) | (92.8) (91.1) | (92.9) | (92.0)
51 20 124. 148. 131. | 19 114. 145. 126.
(90.7) | (92.3) | (91.5) (90.2) | (91.8) | (90.8)
6| 18 141. 160. 142. | 17 138. 151. 134.
(91.8) | (91.9) | (91.9) (90.6) | (91.9) | (90.9)
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Figure 10: Ribbon representation of citrate synthase, closed and open forms.

4.5 Citrate synthase

Citrate synthase is a protein that presents one of the largest hinge-bending motions, together
with lysozyme and hexokinase. Theoretical studies of citrate synthase are discussed in [11, 12].
Results from a normal modes analysis are given in [22]. The ribbon representation of the
protein is shown in Figure 10. The first 20 eigenvalues of the corresponding matrix A are
listed in Table 13, together with the residuals 7 for p = 2. A unique value, —0.001, has been
used for . In order to avoid underflow, BLZPACK uses a truncation value for small numbers,
which explains the residuals equal to 1.0000E-30 in Table 13. Those values indicate a fast
convergence for the first six eigenvalues, similarly to the convergence verified for lysozyme.

Table 14 shows the computational effort, in terms of CPU time, dedicated to skypack, MA27
and MA47, for the factorization of A,, using one processor on a CRAY C90 supercomputer.
The number of single precision words necessary for the factorization and the corresponding
ratios with respect to nz are also given. All factorization routines required a large work
space, up to 24.4 times the original number of non zero entries in A, for MA47, that is to
say, 719 Mbytes. Moreover, the RCM ordering yielded a matrix with a semibandwidth equal
to 4782. However, the ordering schemes in MA27 and MA47 led to much less fill-in in the
factor L. The inferior performance of skypack! was certainly a heritage of the large fill-in.
Still, the performance of skypack? suggests that the partitioned strategy is not appropriate
for the architecture of the computer employed to solve the problem.

Table 15 lists the CPU time required using skypack, MA27 and MAA47, not including the fac-
torization phase, and the maximum number of steps performed by BLZPACK, for NREIG=20.
As can be seen, the version using MA47 presented the best performance. The numbers in
parentheses are the percentages of the CPU time spent with solutions of systems of equa-
tions. Similarly to arabinose, such operations were the most time consuming due to the large
number of non zero entries in the factors L.
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Table 13: Eigenvalues of citrate synthase.

A

k Mk
1 | -2.4903E-07 | 1.0000E-30
2 | -1.4109E-07 | 1.0000E-30
3 | -5.8849E-08 | 1.0000E-30
4 1-9.6633E-09 | 1.0000E-30
5 1.3646E-08 | 1.0000E-30
6 | 6.1157E-08 | 1.0000E-30
7 | 5.6842FE-04 | 4.0555F-13
8 8.4499E-04 | 1.1328E-13
9 | 9.1908E-04 | 3.4592E-13
10 | 1.0837E-03 | 1.0825E-13
11 1.2225E-03 | 3.4370E-13
12 | 1.3587E-03 | 2.5648E-13
13 | 1.4104E-03 | 1.0810E-13
14 | 1.5565E-03 | 4.1953E-13
15| 1.7724E-03 | 3.8210E-11
16 | 1.8248E-03 | 1.5092E-10
17 | 1.9261E-03 | 1.8288E-10
18 | 2.1351E-03 | 1.8945E-09
19 | 2.2571E-03 | 2.4292E-08
20 | 2.2978E-03 | 1.8961E-08

Table 14: Citrate synthase, factorization of A,.

code CPU single precision words
required | factors
skypack! | 603 | 73037019 (19.8) | 73037019 (19.8)
skypack? | 1964 | 73037019 (19.8) | 73037019 (19.8)
MA27 429 | 61902628 (16.8) | 47430390 (12.9)
MA47 449 | 89918398 (24.4) | 48515655 (13.1)

Table 15: Citrate synthase, number of steps and CPU time for NREIG=20.
‘ P ‘ 7 ‘ skypack ‘ MA27 ‘ MA47 ‘
1165|434 (97.9) | 32.2 (97.3) | 24.3 (96.4)

2141 | 51.4 (97.4) | 38.0 (97.0) | 30.0 (96.0)
3133|628 (97.0) | 45.2 (96.3) | 36.3 (95.2)
4|27 | 7T1.3  (96.9) | 49.0 (96.1) | 39.5 (94.8)

524 | 78.7 (96.7) | 56.8 (95.8) | 45.7 (94.4)
6| 22| 87.1 (96.2) | 62.8 (95.3) | 50.7 (93.7)
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5 Conclusions

This work listed a set of proteins for which the computation of low-frequency normal modes
has been performed. These modes are obtained as solutions of an eigenvalue problem and
are important for the theoretical study of conformational changes the proteins experiment
during chemical reactions. The eigenanalyses were carried out with the public domain package
BLZPACK, which is an implementation of the block Lanczos method. The main goal was to
give a flavour, to non specialists in eigenanalyses, of the issues involved in the computations,
as well as to contribute for an expertise in the study of similar applications.

The formulation adopted in our experiments requires the solution of a a standard eigenvalue
problem Az = Az, the pairs (A, z) of interest being in the lower end of the eigenvalue
spectrum. By performing an inversion of the operator A, = A — oI, where o is a real scalar
different from an eigenvalue, the solutions of interest can be obtained efficiently. In practical
cases, the inversion is replaced by a factorization A, = LDLT, using solutions of systems of
equations to imitate operations involving A;!. In the BLZPACK implementation, the matrix
of the target problem does not need to be passed as an argument for the interface module.
This means that each time calculations have to be performed with A,, the control is returned
to the user. The user is therefore free to employ specific storage strategies or experiment with
distinct factorization routines. This flexibility becomes important in many applications, since
the factorization usually dominates the computational costs. In this work, three different
schemes were used for the factorization of A,: a collection of routines intended for linear
algebra operations involving real symmetric matrices stored in a skyline arrangement, and
the routines MA27 and MA47, available in the Harwell Subroutine Library. For most cases,
the dynamic data structures used in MA27 and MA47 required larger arrays than the static
data structure employed in the skyline strategy. However, the reordering schemes available
in those two routines usually computed factors I with less fill-in than those obtained using
a RCM ordering. When the fill-in was roughly the same on the IBM Risc 6000/950, the
partitioned skyline approach carried the factorization out in significantly less time, as can
be seen in Tables 6 and 11. Therefore, on machines with a cache memory, such a strategy
becomes an important option. In addition, appart from RCM, other techniques can be applied
to reduce the profile, as the Gibbs-Poole-Stockmeyer algorithm implemented by J. G. Lewis
and available in Netlib (algorithm toms/582), or those available in the Chaco package [15].
All the same, the operations involving A, (factorization and solution of systems of equations)
are likely to dominate the computational costs. Citrate synthase, for instance, looks like an
extravagant case. Therefore, for large problems, we are tempted to think about iterative
methods for solving systems of equations, thus avoiding the factorization of A,. In this
particular, BLZPACK has already been used with success for nonlinear iterations in self-
consistent field computations.

Concerning the number of steps performed for the determination of the number of eigenvalues
and eigenvectors we have asked for, and in spite of the existence of solutions very close to each
other in all problems, we have seen that a block size equal to one led to good performances. If
the solvers employed dealt with multiple right hand sides in a more efficient way, the situation
could be probably changed. However, our results also showed that as the block sizes increased
more vectors were needed in the bases for attaining convergence. The exception to this was
verified when ¢ was applied relatively far from the first eigenvalue, as seen in crambine.

20



Finally, since in theory A is singular, ¢ = 0 was avoided. However, we saw that A can be
moved from the singularity due to roundoff errors or inaccuracy in the minimization of the
potential energy. Depending on the value of ¢, it can happen that some of the smallest
eigenvalues do not satisfy the convergence criterion. By setting the output level of BLZPACK
accordingly, eigenvalue approximations that do not satisfy the convergence criterion are also
listed. Then, the user may adopt the stratagems suggested in [21] to obtain the missing
solutions. As ¢ is moved towards Ay, the first six eigenvalues converge fast because their
counterparts in A;! become fairly isolated from the others. Conversely, the relative separa-
tion among the interesting values may be not improved and therefore the global convergence
may remain almost unchanged. Our experiments indicated that a value for o equal to —0.0010
or —0.0001 is a good choice. As an alternative, one can solve the problem as generalized,
using B = I and asking BLZPACK to perform an automatic spectrum slicing. Nevertheless,
since the normal modes analyses are usually carried out with a relatively small number of
pairs (A, z), such an approach seems not to be necessary. In addition, the automatic spectrum
slicing requires additional factorizations, which would increase the computational costs.
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